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Understanding the molecular determinants of specificity in protein–
protein interaction is an outstanding challenge of postgenome biol-
ogy. The availability of large protein databases generated from
sequences of hundreds of bacterial genomes enables various statis-
tical approaches to this problem. In this context covariance-based
methods have been used to identify correlation between amino acid
positions in interacting proteins. However, these methods have an
important shortcoming, in that they cannot distinguish between
directly and indirectly correlated residues. We developed a method
that combines covariance analysis with global inference analysis,
adopted from use in statistical physics. Applied to a set of >2,500
representatives of the bacterial two-component signal transduction
system, the combination of covariance with global inference success-
fully and robustly identified residue pairs that are proximal in space
without resorting to ad hoc tuning parameters, both for heteroint-
eractions between sensor kinase (SK) and response regulator (RR)
proteins and for homointeractions between RR proteins. The spec-
tacular success of this approach illustrates the effectiveness of the
global inference approach in identifying direct interaction based on
sequence information alone. We expect this method to be applicable
soon to interaction surfaces between proteins present in only 1 copy
per genome as the number of sequenced genomes continues to
expand. Use of this method could significantly increase the potential
targets for therapeutic intervention, shed light on the mechanism of
protein–protein interaction, and establish the foundation for the
accurate prediction of interacting protein partners.

covariance � mutual information � two-component system �
signal transduction � global inference

The large majority of cellular functions are executed and con-
trolled by interacting proteins. With up to several thousand

types of proteins expressed in a typical bacterial cell at a given time,
their concerted specific interactions regulate the interplay of bio-
chemical processes that are the essence of life. Many protein
interactions are transient, allowing proteins to mate with several
partners or travel in cellular space to perform their functions.
Understanding these transient interactions is one of the outstanding
challenges of systems biology (reviewed in ref. 1). The character-
ization of the molecular details of the interface formed between
known interacting proteins is a requirement for understanding the
molecular determinants of protein–protein interaction, the knowl-
edge of which may be important for a variety of applications
including synthetic biology, e.g., designing new specific interaction
between proteins (reviewed in ref. 2), and pharmaceutics, e.g.,
protein interaction surfaces as drug targets (reviewed in ref. 3).

Experimental approaches to identify surfaces of interaction
between proteins such as surface-scanning mutagenesis and co-
crystal structure generation are arduous and/or serendipitous.
Cocrystal structures provide the best molecular resolution but are
particularly challenging to obtain for transient interaction partners.
In addition, independent evidence is required to ensure that the
structure reflects an accurate picture of the physiologically relevant
interaction.

Given the challenges of these experimental approaches, it is clear
that the comprehensive identification of interaction surfaces be-
tween a large number of cellular proteins may be significantly
expedited by computational methods. Rapid increase in the num-
ber of sequenced bacterial genomes in the past decade [resulting in
�700 completed genome projects to date (4)] has fueled the
increasing use of covariance-based methods of sequence analysis
for protein structure studies. Early on, these methods were largely
applied to single proteins (5–9), e.g., in attempts to provide insight
into tertiary structure. More recently, applications have also been
made to identify interacting residues between proteins (10–13).
Covariance methods rely on the premise that amino acid substitu-
tion patterns between interacting residues are constrained and
hence correlated. To maintain protein function, the acceptance of
a deleterious substitution at 1 position must be compensated for by
substitution(s) in the residue(s) interacting with it (14). Traditional
covariance methods identify interacting residue position pairs as
those exhibiting correlated substitution patterns. Applying this idea
to protein–protein interaction for which the structures of the
individual protein partners are known (11), one would simply look
for correlation in substitution patterns between residues of the
interacting partners, and identify the surfaces defined by the
covarying residues as the interacting surfaces.

However, the covariance approach has a number of shortcomings
that may significantly affect its predictive power (15). One impor-
tant problem stems from the fact that correlation in amino acid
substitution may arise from direct as well as indirect interactions. For
example, a substitution in 1 position of a protein may cause
conformational changes of other residues in the same protein. Such
a substitution may influence the interaction between 2 proteins
without being directly at the interface and can even occur without
being proximal to the interaction surface residue at all. A classic
example of this type is the allosteric effect; but indirect correlations
do not require large conformational changes and may result also
from cumulative effects arising from a web of small direct interac-
tions (see below).

Traditional covariance methods are unable to distinguish be-
tween direct and indirect correlation. A major focus of the present
work is to develop a method to disentangle these correlations. Our
approach is based on 2 premises: (i) the direct interactions are
contained in the pairs of correlated residues as identified, e.g., by
the covariance method, and (ii) all detected correlations in substi-
tutions are generated by the set of direct interactions. One strategy
to identifying the set of directly interacting residue positions would
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be to try out all possible subsets of correlated residue pairs as direct
interactions. A formidable technical challenge with this approach is
to work out the expected statistical correlation generated by a given
set of trial direct interactions, because this itself is a very difficult
global optimization problem [as exemplified by the notorious ‘‘spin-
glass’’ problem (16)]. This challenge is dealt with here by applying
a message-passing approach (17, 18). In recent years, insights from
spin-glass physics have led to the development of generalized
message-passing techniques, which have been applied successfully
to a number of hard combinatorial problems such as K-SAT
(19–21).

A further problem for inference is the sparsity of the information
to be retrieved. The interaction surfaces constitute only a small
subset of residues, each one being in contact with only a few surface
residues of the interaction partner, and only a fraction of the
interacting pairs exhibit covariance. Fortunately, for the many cases
where the monomer structures of the interacting domains are
already known, reliable information on even a limited number of
interacting position pairs can already reveal the mode of interaction.
The computational challenge is therefore to extract these few
pairings from the large number of interprotein position pairs (�104

for typical protein domains) which constitute a substantial level of
background noise.

In the absence of structure information, detection of correlation
between variable positions in interacting proteins therefore requires
a large set of homologous protein sequences with known interaction
partners. The number of sequenced bacterial genomes will soon
approach a number where such data could be extracted from
protein pairs that are ubiquitously found in only a single copy per
sequenced genome. At present, however, analyses are still limited
to proteins that are highly amplified in individual genomes.

In this study, we will apply our method to reveal direct interac-
tions within the prototypical signal transduction system in bacteria,
the two-component signaling (TCS) system, which is highly ampli-
fied [�10 per genome on average (22)] to regulate a flurry of
adaptive responses to environmental and cellular cues; see ref. 23
for a recent review. Signal detection is achieved by the sensor
histidine kinase (SK) and the cellular response is mediated by the
response regulator (RR), which most commonly is a transcription
factor (24). The signal between the 2 proteins is passed via the
transfer of a phosphoryl group, from a histidine residue located on
the so-called HisKA domain of the SK to an aspartate residue on
the RR (25). The SK and RR proteins are believed to interact
specifically in most cases, and the coupled pairs are often revealed
by adjacency in chromosomal location (reviewed in ref. 26). More
than 2,500 such coupled SK-RR pairs have been identified from
�300 sequenced bacterial genomes, making this system ideally
suited for statistical analysis (11, 12). In addition, a large base of
existing genetic and structural information—including numerous
RR (e.g., ref. 27), 2 HisKA (e.g., ref. 8), and an exemplary cocrystal
structure (29)—allows for critical evaluation of the results of
statistical sequence analysis.

We present here a detailed 2-stage analysis on TCS proteins. The
covariance method is first used to identify the correlated residues,
followed by a statistical message-passing approach to infer direct
coupling between pairs of residue positions. Our method distin-
guishes interacting residues from noninteracting ones for both
SK/RR heterodimer and RR/RR homodimer interactions, with
vastly improved accuracy from a mutual information (MI)-based
method without using any ad hoc tuning parameters. We propose
that this method will be applicable for general protein interface
determination given a sufficient number of homologous protein
sequences, a requirement that should soon be met by proteins
present at a single copy per genome.

Results and Discussion
Detection of Constrained Positions in Interacting Proteins. A multiple
sequence alignment of M � 2,546 homologue pairs was constructed

for the HisKA domain of the SK and its partner RR domain by
aligning with the respective hidden Markov models (see Materials
and Methods). In the resulting database, chromosomally adjacent
SK and RR sequences are concatenated to single sequences �Aa �
(A1

a, A2
a, . . ., ANSK�NRR

a ) for a � 1, . . ., M, such that positions i � 1,
. . ., NSK with NSK � 88 correspond to the HisKA domain of SK, and
i � NSK � 1, . . ., NSK � NRR with NRR � 124 to the RR domain.
Alignment gaps are included as a separate letter, so entries A may
assume 21 different values. Frequency counts fij(Ai, Aj) are intro-
duced for the joint appearance of amino acids Ai, Aj in each intra-
and interdomain pair of positions i and j, and fi(Ai) for each single
position i.

To identify correlated positions between the SK and RR proteins
of the TCS system, every position in the SK was compared with
every position in the RR, and their mutual information (MI) was
evaluated. This raw MI was corrected for finite-sample size effects
by subtracting the average MI in a null model; see ref. 11 and
supporting information (SI) Text. The resulting MI between posi-
tions i and j, MIij � MIij

(raw) � MIij
(0), allows for comparison of

different pairs with respect to the statistical correlation of their
amino acid occupancies. Unconstrained position pairs are expected
to have values close to zero.

The value of the score introduces a ranking of all pairs of
positions between the 2 proteins. The histogram of scores allows for
the self-consistent introduction of a threshold of MI(t) separating
relevant mutual information from an exponential background
signal (Fig. S1). We find 32 correlated position pairs with MI �
MI(t). These pairs, involving 12 SK positions and 12 RR positions
(listed in Fig. S2) constitute the starting point of our analysis. As will
be shown below, the main results are nevertheless insensitive to the
precise value of MI(t) used. Also, very similar results (data not
shown) are obtained when using other local pair-correlation mea-
sures, as e.g., a �2 test if residue frequencies in interacting and
noninteracting protein pairs are drawn from the same distribution
(13) and a likelihood ratio of the data under a correlated and a
factorized model (12). Both measures identified almost the same
pairings between the positions of the SK and RR domains as the
high MI pairs (Fig. S2), and comparable even if slightly shuffled sets
of high-ranking position pairs.

Disentangling Direct from Indirect Couplings. The statistically corre-
lated pairs are candidates for positions in contact at the protein–
protein interface. However, statistical correlation does not auto-
matically imply strong direct interaction. Imagine that position i is
coupled directly to j, and j to k. Then i and k will also show
correlation, without being directly coupled. The effect may become
even more pronounced if there are multiple paths of weak couplings
connecting i and k. A strong correlation may emerge without the
existence of any strong direct coupling linking these positions to any
other residues position.

The MI score introduced above is a local one, in that it considers
only 1 residue pair at a time, and compares different pairs only at
the end after scores are determined. This approach is therefore
unable to disentangle direct from indirect couplings; the same is
true for other local approaches, e.g., Refs. 12 and 13. To circumvent
this problem, we infer a global statistical model P(A1, . . ., ANSK � NRR

)
describing the joint probability of the concatenated SK and RR
sequence A� NSK � NRR

. This statistical model is required to satisfy 2 key
conditions.

(i) It has to be consistent with the statistics of the data up to the
level of residue pairs, i.e., the marginal distributions of the model
for 1 or 2 positions have to coincide with the frequency counts fi(Ai)
and fij(Ai, Aj) introduced above:

Pij�Ai, Aj� � �
�Ak�k	i, j


P�A1, . . . , AN� � fij�Ai, Aj�. [1]
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This condition has to hold for all intra- and interprotein pairs of
positions (i, j), i, j � 1, . . ., NSK � NRR. Note that in principle
higher correlations of 3 or more positions can be included in a
similar way. However, the size of the available dataset does not
allow for going beyond 2-residue correlations. The 21 � 21
elements of fij(Ai, Aj) have to be estimated from the M � 2,546
sequences in the database; frequency counts for �2 positions
would be very imprecise because of insufficient sample size.

(ii) To avoid overfitting, the model has to show as few parameters
as possible to meet condition i. Application of the maximum-
entropy principle yields the simplest possible (i.e., least constraint)
model satisfying these conditions (30):

P�A1, · · · , AN� �
1
Z

exp� ��
i� j

e i j�Ai, Aj� � �
i

h i�Ai�� [2]

Model parameters are direct couplings eij(Ai, Aj) between amino
acid Ai in position i and amino acid Aj in position j, and local
biases hi(Ai) describing the preference for amino acid Ai at
position i. Determining these parameters to meet Eq. 1 is an
algorithmically hard task, and can be achieved by using a 2-step
procedure. All technical details are explained in the SI Text:

1. Given a candidate set of model parameters, single- and 2-residue
distributions Pi(Ai) and Pij(Ai, Aj) are estimated from Eq. 2. This
is computationally expensive, the exact summation over all
possible protein sequences would require O(21N�2N2) steps.
Approximations can be achieved by MCMC sampling—which is
expected to be very slow for 21-state variables—or more effi-
ciently by a semiheuristic message-passing approach (31). We
use the latter approach; it reduces the computational complexity
to O(212N4).

2. Once all Pij(Ai, Aj) are estimated, we can use gradient descent
to adjust the coupling strengths eij(Ai, Aj) [the hi(Ai) can be
treated in a more efficient way explained in the SI Text]:

eij
�new��Ai, Aj� � eij

�old��Ai, Aj� � 
�f ij�Ai, Aj� � Pij�Ai, Aj��

[3]

This equation can be derived variationally within a Bayesian
approach, it maximizes the joint probability of the data under
model 2 (compare SI Text). Because this probability is convex,
it is guaranteed to converge to a single global maximum.

These 2 steps are iterated until Eq. 1 is satisfied within user-given
precision. In the inferred model, matrices eij(Ai, Aj) describe the
direct coupling between residue positions i and j. To compare
different position pairs, we propose a scalar measure of the coupling
strength. For technical reasons [invariance with respect to gauge
symmetries of model 2 and robustness with respect to a
pseudocount introduced to regularize inference (cf. SI Text)] a
quantity called direct information (DI) is introduced. It measures the
part of the mutual information of a position pair, which is induced
by the direct coupling. Intuitively, it can be understood as the
mutual information in a 2-variable model for positions i and j only,
which has the correct statistics of the amino acid occupancy of single
positions, and coupling eij(Ai, Aj) in between. The full technical
definition is given in the SI Text.

Because of the scaling of the algorithmic complexity, the method
cannot be applied simultaneously to all 212 positions of the protein
alignment. Therefore, the 60 positions of the protein alignment
being involved in the 140 highest MI-ranking pairs (containing the
32 candidates for contact pairs identified before) are selected. The
results are shown in Fig. 1A as a scatter plot of the full mutual
information MI versus its direct contribution DI for the 1,770
considered position pairs (i, j). We observe that low MI implies low
DI (Fig. 1A Lower Left), but high MI does not necessarily imply high
DI. DI can thus be used to rank the 32 potential links previously

identified by MI. This distinction allows us to identify 2 groups of
position pairs:
Group I. This group, including the 9 pairs in Fig. 1A Upper Right (red
zone), has both high MI and large direct coupling DI. It connects
8 SK positions with 5 RR positions. The strong links there are
expected to represent physical interactions, i.e., direct contacts in
the interface of the SK/RR dimer.
Group II. This group, including the 22 pairs in Fig. 1A Lower Right
(green zone), is densely connected by weak direct couplings (i.e.,
low DI). High MI between these pairs emerge from the cooperation
of a multitude of such weak links. The second group contains 4 SK
and 7 RR positions. They would not be expected to be in direct
contact in the dimer, but instead might have a collective influence
on the functionality of the SK/RR phosphotransfer interaction.

An additional set of 8 pairings (including 1 of the 32 high-MI
pairs) are found just below the thresholds set for MI and/or DI. This
group lies in the blue zone in Fig. 1A. It is expected to contain both
direct contact pairings and a few distant pairs.

The network defined by these residue pairs is shown in Fig. S2.
Note that it contains many loops, so it cannot be found by
dependence-tree-based inference methods (as used in ref. 12). Its

Fig. 1. The combined covariance/message-passing approach detects 2 groups
of correlated pairs. (A) Scatter plot of direct mutual information (DI) versus total
mutual information (MI) reveals 2 classes of covarying residue pairs, those with
strong direct correlation found in the upper red quadrant (group I) and those
with low direct correlation found in the lower green quadrant (group II). A group
of pairings just around the border of the MI and/or the DI cutoff is highlighted in
blue. (B) Direct and indirect interaction pairs depicted on exemplary structures of
theHisKAandRRdomain.All residuesthatappear inthenetworkofpairingswith
MI � MI(t) were mapped onto the structures of HK853 from T. maritima (HisKA
domain) and Spo0F from B. subtilis (RR domain). Those pairings showing strong
direct correlation are depicted in red and connected by a red line and those that
show low direct correlation are depicted in green and connected by a green line.
Green lines connecting red residues represent low direct correlation for that
particular residue pairing. For orientation, the N and C termini and relevant
structural elements are labeled. The phosphotransfer sites H260 in HK853 and
D54 in Spo0F are shown in yellow.
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structure is found to be robust with respect to the precise details of
the algorithm: The values of DI as inferred from half of the dataset
almost coincide with the values as inferred from the full dataset; a
slightly smaller but similar degree of coincidence is found if 2
disjoint half-size datasets are used (Fig. S3). In particular, the
high-scoring DI values are well reproduced.

Even though for each species only 1 sequenced strain was
included in the database, sampling biases due to phylogenetic
relations between the sequenced species exists. To evaluate
whether DI values are sensitive to this phylogenetic misdistribution,
a reweighting procedure for potentially oversampled regions in

sequence space is introduced: For each interaction SK/RR pair Aa�,
the number na of sequences having �80% sequence identity with

Aa� is determined, and the contribution of Aa� to the frequency
counts fi and fij is assigned factor 1/(na � 1). Global model inference
is applied to determine DI. The ranking by modified DI is found to
reproduce the original ranking: In between the 10 highest-ranking
position pairs, one finds 10 common pairs, in between the first 20
pairs 17, in between the first 30 ranks 25 common position pairs are
found (Fig. S4). Only for reweighting with respect to 60% sequence
identity did part of the information get modified (data not shown).
This result illustrates that sampling has only small effects on the
power of the proposed inference method in predicting contact pairs
in interacting protein domains.

Interaction Surface of the SK/RR Phosphotransfer Interaction. The
validity of the above sequence-based predictions can be tested by
using structural representatives of the SK HisKA domain [HK853
of Thermatoga maritima; PDB ID code 2C2A (28)] and of the RR
domain [Spo0F from Bacillus subtilis; PDB ID code 1PEY (32)] as
well as the cocrystal structure of Spo0F in complex with phospho-
transfer protein Spo0B, both part of the sporulation phospho-relay
in B. subtilis [PDB ID code 1F51 (29)]. Phosphotransferase Spo0B
is a protein evolutionary related to the SK and features strong
structural similarity, but is distinct in primary sequence (see below).

The HisKA domain exists as a homodimer of 2 helical hairpins,
which form a 4-helix bundle. The conserved histidine residue
(phospho-donor for the RR) lies on the �1-helix and faces away
from the homodimer core. By using HK853 numbering (Fig. 1B),
this residue (yellow) is at position 260. Approximately 20 residues
downstream of H260 is a hairpin turn that terminates the �1-helix
and initiates the �2-helix that runs antiparallel to the �1-helix.
Positions of strong directly coupled residues (group I) predicted to
form direct contacts are 267, 268, 271, 272, and 275 on the �1-helix
and 291, 294, and 298 on the �2-helix, indicated by the red boxes in
Fig. 1B. They are all found C-terminal to the active-site histidine,
in the vicinity of the hairpin and are exposed to the exterior of the
4-helix bundle.

The RR domain forms an �/�-fold consisting of a 5-stranded
�-sheet surrounded by 5 �-helices with the catalytic aspartate
(receptor in phosphotransfer) nestled on the surface of 1 face of the
fold, at position D54 by using Spo0F numbering (indicated in
yellow). Group I residue positions are 14, 15, 18, 21, and 22, as
indicated by the red ellipses in Fig. 1B. These are all situated on the
�1-helix and exposed to the exterior of the RR domain.

SK residue positions belonging to the high-MI but low-DI group
II are 251, 252, 257, 264 (green boxes in Fig. 1B). Residue positions
257 and 264 are on the same face of the helix as the phosphory-
latable histidine residue 1 turn N- or C- terminal, respectively.
Positions 251 and 252 represent partially buried residues located at
the base of the 4-helix bundle. RR residue positions belonging to
group II are 56, 84, 87, 90, 94, 95, and 99 (green ellipses); all but 1
(residue 56) are localized in or around the �4-helix.

Mapping these coupled positions to the exemplary individual
structures, it becomes clear that group I pairings (red lines in Fig.
1B) define a mode of spatial interaction between the �1- and
�2-helices of the SK and the �1-helix of the RR, bringing close

together the catalytic site residues. It is, however, impossible to
spatially align also the group II residue positions (green lines in Fig.
1B), consistent with the notion that these do not present direct
interactions according to their DI ranking. [The high MI values of
group II pairings likely reflect a dynamic role of these residues in
arranging the active sites for phosphotransfer (33).]

The precise interaction mode predicted by group I coupled
pairings is revealed by the Spo0B/Spo0F cocrystal structure (29),
which provides a structural example to measure the distances of
most coupled residues (see Fig. S5 for a structural representation
and detailed data on residue pair distances).* All covarying
residues of group I that can be mapped to the Spo0B structure
are located in close proximity (�6Å) at the interaction surface
between Spo0B and Spo0F. Additionally, 5 of 6 pairings that just
miss the set thresholds for DIij and/or MIi j depicted in the blue
zone in Fig. 1 A are also within 6Å of each other.

From the scatter plot of the distance between a pair of residues
against their DI and MI for the 408 position pairs matched to the
cocrystal structure (Fig. 2A), the DI values (red symbols) are clearly
seen as anticorrelated with distance. Almost all strong direct
interactions correspond to short distances. On the contrary, no
strong correlation is observed between the distance and the MI
values (blue symbols) alone. To be more quantitative, pairings were
ranked according to their DI or MI values, and specificity (defined
as the fraction of pairings with a minimal distance of �6 Å) was
displayed as a function of scoring rank percentile (Fig. 2B).
Whereas MI (blue line) produces the first false positive after only
1 true positive and rapidly drops to specificities of 30–40%, DI (red
line) amazingly maintains specificity one for the top 2.5% of the 408
scoring pairs (� 10 true positives).

It can then be concluded that the combination of covariance and
message passing is capable of identifying direct surface interactions
from sequence data alone and that DI is a much better indicator of
proximity of residues than MI. This is particularly important in
instances where no clear overrepresentation of high MI scores can
be observed. In those instances the DI ranking alone can be used
to infer proximity.

*Despite significant structural homology, sequence homology between the Spo0B inter-
action domain and the HisKA domain is poor (E � 0.5 for HMM match to Spo0B) and only
SK residues on the �1-helix can be reliably matched to Spo0B.

Fig. 2. Direct Information is inversely correlated with residue distance of pairs
in the Spo0B/Spo0F cocrystal structure. (A) Minimal atom distance for all 408
pairings that could be mapped to the Spo0B/Spo0F cocrystal structure was de-
termined in Ångström and plotted either against direct information DI (red
symbols) or total mutual information MI (blue symbols). (B) Specificity vs. rank
percentile for predicting contact pairs via DI (red curve) and MI (blue curve).
Specificity is defined as the fraction of pairings at the given rank percentile that
are within 6Å in the Spo0B/Spo0F cocrystal structure.
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Interaction Surface of RR Homodimers. Many proteins perform their
function in bacteria as homooligomers, an example being transcrip-
tion factors. Identifying their interaction surface poses considerable
problems beyond the ones discussed above: statistical couplings of
residue positions can result both from the role of a pairing as a
residue contact inside the monomer structure, and as an inter-
monomer contact. It is not a priori clear that both mechanisms lead
to comparable statistical correlations, i.e., that both of them can be
simultaneously detected in analyzing large sample sets of dimer-
forming proteins. Even if found to be comparable, there is no
intrinsic way to distinguish intra- and intermonomer contacts. Only
the knowledge of the monomer structure allows selecting candidate
pairs for the interaction surface. However, the simultaneous de-
tection of both types of statistical coupling would aid other methods
in predicting tertiary and quaternary structures.

To test what kind of pairings are detectable, the global inference
approach was applied to probe RR/RR interactions. Significant
experimental support for a phosphorylation-dependent dimeriza-
tion that increases transcription factor-DNA affinity in the largest
class of RR proteins, the OmpR/PhoB class, has previously
emerged (34). For probing of couplings within the phosphotransfer
domains of RR proteins, the database construction was hence
limited to proteins that contain both a RR phosphotransfer domain
and a DNA binding domain of the OmpR/PhoB class (see Materials
and Methods).

This search and alignment procedure identified �2,000 proteins.
MI scores were calculated for the 123 � 124/2 possible combina-
tions of RR/RR pairings. The distribution plot of MI scores does
not result in a clear anomalous tail (data not shown), unlike what
was observed for the SK/RR analysis (Fig. S1). Message passing was
applied to calculate DI values for all pairings of the 60 positions
contained in maximal MI scores, and the results were ranked
according to their DI values (see Table S1 for the top 60 entries).

To evaluate the meaning of these DI rankings, the minimal atom
distances of all pairs were determined by using 3 structural exam-
ples of OmpR class RR: those of Escherichia coli, ArcA [PDB ID
code 1XHE (27)] and PhoP [PDB ID code 2PKX (35)], and
Streptococcus pneumoniae MicA [PDB ID code 1NXW (36)]. For
illustration, the 15 top-ranking pairs (excluding 3 pairs that were
proximal in primary sequence) were mapped onto the ArcA
structure (Fig. S6). As for the SK/RR analysis, a strong correlation
between DI and minimal atom distance emerged (Fig. S7A), and
the majority of the 60 top-scoring pairs (Table S1) are in close
proximity within the monomer structures (i.e., within 6 Å). Four
dimer contacts are also identified (ranks 1, 3, 26, and 40). False
positives (i.e., pairings with distances �6Å) do not emerge until
rank 24 and remain sparse within the top 60 pairs.† Quantification
of specificity was determined as for the SK/RR analysis and
demonstrates again that DI impressively enhances the predictive
power over MI alone (Fig. S7B).

When mapping the 4 dimer contacts onto the 3 structural
examples, it becomes apparent that the interactions formed by some
individual contact residues are quite diverse (Fig. 3). The cluster
involving pairings‡ 86:106 and 86:108 demonstrates nicely the type
of residue variation that is the foundation of the covariance-based
method. As shown in Fig. 3, a salt bridge is formed between E86 and
R108, and a hydrogen bond connects E86 and S106 in the MicA
structure. In PhoP, an aromatic stacking interaction between a
tryptophan and a histidine residue (W86 and H106) can be ob-
served. The ArcA dimer is stabilized by a hydrogen bond between
E86 and N106; an additional interaction (salt bridge) is predicted

between E86 and R108.§ Similar variations exist in the pairing of
residues 94 and 115, whereas the pairing between residues 89 and
109 is always a salt bridge between E and K. Of course, the
appearance of the pair 89:109 in the high DI list shows that E:K is
not the conserved pairing between these positions among all RRs,
but only one of the popular residue pairings at these positions (see
Fig. S8). Information derived from such analysis may be exploited
to design synthetic RR molecules with various degrees of cross-talk
with the endogenous system.

In summary, inter- and intramonomer contacts lead to compa-
rable statistical correlations. DI calculations provide constraints
that could aid de novo structure prediction when applied to a single
protein, or aid the verification or prediction of quaternary structure
in cases where the monomer structure is available.

Concluding Remarks. A computational method was introduced to
infer structural details of protein–protein interactions based on
primary sequence information. The method takes correlated resi-
dues from the covariance analysis as a starting point, and disen-
tangles correlations arising from direct vs. indirect interactions by
using a global inference approach implemented by a message-
passing algorithm. The combination of covariance analysis and
global inference impressively enhances the specificity of contact
pair prediction compared with more traditional, purely local co-
variance-based approaches (e.g., MI). Currently, the applicability of
the method relies on the existence of �10 structurally homologous
protein sequences contained in a typical bacterial genome, due to
the still limited number of sequenced genomes. With rapidly
expanding genomic databases—including genes obtained via shot-

†Interestingly, all false positives within the first 60 pairs include residues localized to the
�1-helix. A rationale for the occurrence of these apparent false positives is given in the
legend of Table S1.

‡ArcA numbering used throughout for clarity; for accurate MicA and PhoP numbering,
deduct 2 from the ArcA numbering.

§The possible E86-R108 salt bridge is not realized in the ArcA structure because of a likely
crystallographic artifact. In the crystal lattice, residue R108 forms a salt bridge with an aspartyl
residue in a neighboring ArcA dimer, a contact not available in solution (data not shown).

Fig. 3. Direct interaction between the identified dimer contact pairs. Four dimer
contact pairings (red entries in Table S1) are localized to the �4- and �5-helices and
are shown on the exemplary OmpR class RR structures of ArcA, PhoP, and MicA as a
dashed line. Whereas contact pairing 89:109 (ArcA numbering, for PhoP and MicA
numbering deduct 2) happens to represent a salt bridge in all 3 structural examples
shown here, the pairing 94:115 and the cluster involving pairings 86:106 and 86:108
demonstrate nicely the type of residue variation that is the basis of the covariance
method(seetext).Detailedanalysisofthecovarianceamongtheresidues involvedin
these 4 pairings are given in Fig. S8.
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gun sequencing of environmental samples by the emerging field of
metagenomics (reviewed in ref. 37)—the sample number should
soon not be a limiting factor for the large majority of proteins that
exist in a single copy in a genome, as long as they are widely
occurring across the bacterial species.

The molecular details of the protein–protein interaction revealed
may yield a large number of potential targets for antibiotic drug
design in the absence of precise structural information. More
broadly, the method of disentangling direct and indirect interac-
tions presented here may also be valuable in aiding the interpre-
tation of correlations observed in other large biological datasets,
including mRNA and protein profiles, and neuronal spike activities.

Materials and Methods
Database Construction. Domains were aligned and culled from the nonredun-
dant refseq database (release 19) (38) using HMMER (39). Only genomic data
from unique species were included to avoid oversampling of organisms with
multiple sequenced strains in the database. Two overlapping sets of interacting
domains,asdefinedbyhiddenMarkovmodels (HMMs) inthePfamdatabase(40),
were used in this study. For the SK/RR interaction study the accession numbers for
the respective HMMs were PF00512 (SK) and PF00072 (RR). Functional association
of these domains is inferred from chromosomal adjacency determined by GI
numbers that differ by 1. For the RR/RR interaction the set of all proteins con-
taining a PF00072 domain was restricted by requiring that the proteins also
possess a specific DNA binding domain homologous to the OmpR-C domain
(accession no. PF00486). All HMM searches used are detecting complete domains
(in contrast to a search for fragments of domains).

Mutual information (MI) calculation. MI was measured as described in ref. 11; see
SI Text for a review.

Message Passing. The computationally hard task in the suggested global infer-
ence is the estimation of marginal distributions for single positions and pairs of
positions in the sequence alignment. We used the computationally efficient but
semiheuristic message-passing approach (17, 18). This approach would be exact
on tree-like graphs of couplings between positions, but it is known to work

efficiently also for loopy graphs. The standard formulation of message passing in
terms of belief propagation (17, 18) estimates only single-variable marginal
distributions Pi(Ai). For estimating also 2-variable distributions Pij(Ai, Aj) a recently
proposed extension called susceptibility propagation (31) is used. Technical de-
tails are extensively exposed in the SI Text.

The computational cost of the approach is O(212N4) and therefore not feasible
for thefull aminoacid sequenceshavingn�212positions.Byusingacutoff inMI,
a subset of up to �60 positions involved in high MI values is selected, and all pairs
of these selected positions (intra- and interprotein pairs) are considered. The
inference of the parameters of the reduced model requires �4 days of compu-
tational time on a single CPU of a Dell dual quad-core 2.33GHz Xeon processor.
A selection of 100 residues would require �1 month of computation. However,
smaller residue sets (n � 32, 40,50) demonstrate that the qualitative results given
in Results and Discussion do not depend on the choice of the MI cutoff, as soon
as all nodes contained in the network of coupled residues of Fig. 3 are included
(data not shown).

Direct Information. In the inferred statistical model, the direct information

DIij � �
Ai, Aj

Pij
�dir��Ai, Aj� ln

Pij
�dir��Ai, Aj�

f i�Ai�f j�Aj�
[4]

is calculated by using the contribution Pij
(dir)(Ai, Aj) of the direct coupling eij(Ai, Aj)

betweensequencepositions iand j tothe2-residuedistribution.Thiscontribution
can be calculated in a hypothetical system containing only the 2 positions i and j.
They are coupled by eij(Ai, Aj) and have the correct single-variable marginals fi(Ai)
and fi(Aj).DImeasures thedirect couplingstrengthbetween iand j; see theSIText
for a mathematical definition of Pij

(dir)(Ai, Aj).
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